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Abstract
Homology scaling laws for main-sequence stars are derived, and used to estimate how late-type stars 
evolve during their core hydrogen-burning phase. Though not exactly representative of realistic stellar 
models, the scaling laws do provide a useful method of making estimates of small perturbations either to 
the initial conditions or to the physics used in the so-called standard theory of stellar evolution. In 
particular, evolution with varying gravitational constant and varying mass are considered explicitly. The 
scaling laws are used to determine how gross observable parameters such as luminosity, neutrino flux or 
acoustic oscillation frequencies depend on the mass, composition and age of the star. By inverting the 
relations it is shown that with the precision of the best measurements of luminosity, effective temperature 
and the heavy-element to hydrogen abundance ratio, supplemented with a knowledge of the principle 
parameters characterizing the high-order acoustic oscillation spectrum, theoretical models could be cali
brated to determine mass and age to within about 20 per cent. No useful information about the helium 
abundance can be obtained in this way.

Introduction
Much of Bengt Strömgren’s work was concerned with or motivated by the desire to 
understand the nature of stars. In his early days he invested a substantial effort in 
modelling the internal structure, as also did Eddington and Milne at that time. The 
critical dependence of stellar structure on molecular weight and opacity implied that 
the position of a star on the Hertzsprung-Russell diagram depended not only on its 
mass but also on chemical composition, and therefore potentially afforded a means of 
inferring the proportion of hydrogen to heavy elements in stars. In 1937 the work by 
von Weizsäcker on nuclear transmutation made it evident that helium was the princi
pal product of thermonuclear reactions in stars, and immediately Strömgren consi
dered the implications of helium being a major constituent of stellar material. Now 
there was an additional important parameter to determine, and the problem of 
inferring the nature of a star from observation became richer, and correspondingly 
more difficult. The central question was then: What are the relative abundances X, 
Y and Z of hydrogen, helium and heavy elements in the interior of a star? And 
subsequently it was asked: Can we distinguish observationally between stars of diffe
rent ages? These are amongst the questions I shall be adressing again in this lecture.

Most of the early work on stellar structure assumed that chemical composition was 
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uniform throughout the interior of a star. This permitted the extensive use of homolo
gy scaling laws to compare the properties of one star with another, at least on the 
main sequence where issues of dense highly degenerate cores and extended giant 
envelopes do not arise. The sun occupied a central position in the investigations, 
providing an accurately determined standard with which to calibrate theory. Subse
quently it became evident that stars are not chemically homogeneous, though it was 
not until the advent of electronic computers that it was possible to calculate, or 
perhaps 1 should say estimate, the material distribution in evolved stars. Now it is 
possible to carry out quite detailed numerical computations, and compare the out
come with a wealth of observational data.

So where does that leave the methods used by Strömgren and his contemporaries 
in those pioneering days? They are not outdated. Even though computers have taken 
over the role of constructing detailed models, simple scaling arguments, even under 
circumstances in which the conditions that justify them are not strictly satisfied, are 
extremely important aids to rationalizing the results of numerical computations, and 
so to increasing our understanding of the complicated balance of processes that 
determine stellar structure. By representing the results in rough analytical terms, 
people like me who are unskilled at interpreting vast arrays of precise numerical 
computer output can appreciate more readily what are likely to be the most import
ant factors determining the observable properties of stars. In this lecture I shall 
illustrate this by discussing what is perhaps the most basic aspect of the subject, 
namely the hydrogen-burning main-sequence phase. I shall keep the discussion as 
simple as possible, ignoring unnecessary complications without justifying why they 
are unnecessary: unlike the pioneers in the days before electronic computing, I can 
always consult numerical solutions of more complicated and hopefully more realistic 
theoretical models to be reassured that my approximations do not distort the picture 
too severely.

One might well ask what the purpose of such an exercise is. Surely the main 
sequence is so well understood that there can be hardly any more to say at so 
elementary a level. To be sure we have the solar neutrino problem, but after so many 
thousands of hours of computer time have been dedicated to the unsuccessful search 
for but one theoretical model of the sun that is not in conflict with observation, rough 
analytical estimates can hardly be of any real value. That is certainly the view held by 
many workers in the field. However, I do not support it for the following reasons. 
First, by thinking in very simple terms one is forced to step back from the morass of 
detail that is present in the modern computer programmes, and perhaps then one can 
see more clearly what might be deficient in the theory. Second, with a simple picture 
in mind one can predict the results of new computations; this is important because it 
is extremely useful to know the answer to a problem in advance when trying to judge 
whether the inevitable errors that creep into new modifications to a computer pro
gramme have been eradicated. Finally, and most important of all, when one can 
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really find no errors remaining and when the numerical results persist in disagreeing 
with expectation, one is forced to modify one’s simple picture: that is what constitutes 
real learning.

I am not claiming that one can necessarily use simple arguments to make precise 
absolute comparisons with observation. One needs an accurately computed detailed 
model for that. But what one can do is to enquire how that model is modified when 
certain parameters are changed, or when certain physical phenomena are modified or 
even introduced into consideration, provided the modification is not too large. One is 
essentially carrying out approximate perturbation theory.

I must point out also that there is a new reason for rediscussing main-sequence 
evolution: it is provided by the body of new seismic data that have recently been 
gathered from solar observations, and some similar data that we anticipate will be 
obtained in the near future from other stars. These data provide additional and 
different constraints from those imposed by the bulk parameters that have been 
obtained by classical astronomical techniques, such as mass and position on the 
Hertzsprung-Russell diagram. In confronting theory with them it is again productive 
initially to think in very simple terms.

2. Simple main-sequence evolution
What I mean by ‘simple’ evolution is the theoretical study of spherically symmetrical 
stellar models whose temporal variation on the main sequence (possibly after an 
initial transient associated with the approach to the main sequence) is determined 
solely by the gradual nuclear transmutation of hydrogen into helium; in this descrip
tion the star’s mass is constant, and there is no transport of chemical species through 
the star except in convection zones.

The subject has been studied extensively. In particular, the theory has been ap
plied to the mass-luminosity relation and the position of stars on the Hertzsprung- 
Russell diagram. The sensitivity of the results to chemical composition, and to uncer
tainties in the theoretical description of energy transport in the convection zones, has 
also been investigated.

As a result of the discrepancy between the observed and theoretical values of the 
solar neutrino flux, the theory has been quite highly refined. The microphysics espe
cially has been reassessed, to provide a more secure basis for the procedures by which 
the nuclear reaction rates, the equation of state and the opacity are determined. The 
sensitivity of solar models computed in this simple way to the obvious uncertainties in 
the microphysics has been extensively investigated, and summarized recently in two 
important papers by Bahcall et al. (1982) and Bahcall and Ulrich (1988), which 
provide a useful basis for comparing other possibly more realistic models. Indeed, 
solar models computed in this simple way are now commonly called ‘standard’, even 
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though the details are continually being modified. In the attempt to resolve the 
neutrino problem, uncertain parameters have understandably sometimes been set to 
extremes of plausibility.

Before proceeding into any detail it is useful to list some of the more obvious 
features of the so-called standard models:

(i) hydrostatic balance and thermal balance,
(ii) no rotation nor dynamically significant magnetic field, and hence spherical 

symmetry,
(iii) no accretion nor mass loss,
(iv) no macroscopic meridional motion, other than small-scale turbulence in the 

unstably stratified convection zone; therefore, in particular, no mixing of en
tropy from convection zones into radiative regions, and no mixing of the pro
ducts of nuclear reactions in lower main-sequence stars that do not have convec
tive cores, and therefore

(v) no wave transport of energy or momentum.
It is also assumed that the generally accepted laws of physics are valid. Thus, for 
example, with respect to appropriate units of mass, length and time in which 
Planck’s constant h and the speed of light c are constant:

(vi) G is constant,
where G is the gravitational constant.
These features, which are written into the theory, are essentially assumptions, 

though they are not wholly unjustified. We note that most main-sequence stars do not 
appear to vary substantially on a dynamical timescale, and therefore that hydrostatic 
balance must be a very good first approximation. Moreover, since for all but perhaps 
the most massive stars the characteristic nuclear transmutation time substantially 
exceeds the thermal diffusion time, most main-sequence stars have had time to 
achieve thermal balance. Therefore they are presumably in thermal balance, unless 
some instability has recently upset it. Studies of thermal stability, particularly of the 
sun, generally provide little cause for doubt. Although the sun is observed to rotate 
(and spectrum line-width measurements of other stars suggest that the solar rotation 
is not grossly atypical of stars in its spectral class) the centrifugal force is extremely 
small compared with gravity. This is consistent with the figure of the sun having been 
observed to differ from being spherical by no more than about 1 part in 106. Early- 
type stars rotate more than 100 times faster, but except in extreme cases the neglect of 
centrifugal force in the hydrostatic equation is probably not a serious flaw in the 
models. For most main-sequence stars there is little evidence of substantial accretion 
or mass loss.

It is more difficult to justify the remaining assumptions. Although centrifugal force 
is unimportant to the hydrostatic balance in the radial direction, it is potentially 
important horizontally. Indeed, in a uniformly rotating star (or a star in which 
angular velocity Q is instantaneously a function only of distance from the rotation 
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axis) the rotational terms in the momentum equation can be represented as the 
gradient of a potential which can be added to the gravitational potential, thereby 
changing the meaning of horizontal; von Zeipel (1924) pointed out that except under 
very contrived circumstances the pressure cannot be made constant on surfaces of 
constant total potential, which Eddington (1925) and Vogt (1925) realised would 
lead to possibly significant circulatory motion. Basically, the reason is that thermal 
diffusion tends to make surfaces of constant temperature, and consequently surfaces 
of constant pressure, more nearly spherical than what is required for hydrostatic 
balance. If Q is not a function of distance from the axis alone, the advection terms 
cannot even be derived from a potential; then they can never be balanced by a 
pressure gradient however contrived, and motion must necessarily ensue.

This conclusion might be invalidated if Lorentz forces associated with an internal 
magnetic field were taken into account. A general study of rotating magnetic equili
brium configurations of realistic stellar models has not been undertaken, but it seems 
likely that any that might exist would be unstable (Pitts and Tayler, 1985).

The first serious attempt to calculate the flow resulting from rotational imbalance 
in an isolated star was carried out by Sweet (1950). In his calculation, as in most that 
have followed, Q was assumed known, and the influence upon it of advection of 
angular momentum by the circulation was not taken into account. A self-consistent 
steady solution of the equations governing a rotating nondegenerate nonmagnetic 
star has never been found; any that might exist is likely to be unstable (e.g. Gough, 
1976; Tassoul, 1978; Zahn, 1989). Nevertheless, it appears that the characteristic 
circulation time is likely to be of order of the thermal diffusion time multiplied by the 
ratio of the gravitational to the centrifugal acceleration. It is called the Eddington- 
Sweet time, and for sun-like stars is about 100 times the characteristic nuclear evolu
tion time, assuming the surface angular velocity to be characteristic of the interior 
rotation.

I appear to have digressed quite a long way from my simple picture of a star, and I 
have done so quite deliberately in order to draw attention to one of its possible 
deficiencies: although a rotationally driven circulation is too slow to be dynamically 
important, it could have a marked effect on the chemical evolution of the star by 
transporting the products of the nuclear reactions away from the site of their creation. 
An Eddington-Sweet time 100 times the nuclear time may at first seem too long to be 
significant for the structure of the sun, but a little thought makes one realise that that 
might not be so. In a subject with great uncertainty it is not difficult to erode 
confidence in a factor of 100, particularly when it is appreciated that the circulation 
rate is proportional to the square of the angular velocity. First, we know that the sun 
was rotating more rapidly in the past than it is now (the solar wind today is removing 
angular momentum on a timescale comparable with, though apparently somewhat 
greater than the age of the sun). This is consistent with the observation that the 
rotation rates of stars in young clusters, notably the Hyades and the Pleiades, are 



18 MfM 42:4

substantially greater than those of older but otherwise similar stars. So perhaps 
rotationally induced material mixing has significant consequences early in main- 
sequence evolution. Secondly, the scant seismological evidence that concerns the 
solar core indicates that even today the core might be rotating perhaps three times 
faster than the surface (Duvall et al., 1984; Gough, 1985) though little confidence can 
yet be given to what at present is no more than a slight hint. Thirdly, we know that 
steep gradients of angular velocity can enhance the circulation rate, and a relatively 
rapid rotation of only the core means that substantial gradients might exist. And 
finally, the conclusion that a steady rotating star cannot be stable implies that the 
motion must actually vary with time. On what time scale we do not know, though one 
is tempted to ponder over the stellar cycle time, 22 years in the case of the sun, as a 
candidate. What are the consequences?

Transport of momentum and energy by waves is commonly thought to be neglig
ible. Most nonadiabatic linear studies of g modes exicted by nuclear reactions in the 
core of the sun have found instability at some epoch on the main sequence. One 
might anticipate that these modes would have the capacity to redistribute not only 
momentum and energy, but also the helium produced by the nuclear reactions. 
However, it must be appreciated that the uncertain interaction between the modes 
and other forms of motion, such as convection, leaves considerable room for doubt. 
So perhaps in reality all the modes are stable. Moreover, Dziembowski (1983) has 
argued that even if the modes were excited, their nonlinear development would be so 
severely curtailed by resonant coupling to stable modes that their ability to induce 
substantial transport of material in the core would be negligible. However, it is not 
wholly out of the question that their influence on the distribution of angular momen
tum throughout the star is not insignificant.

Notwithstanding this list of concerns, it is very likely that the broad picture pro
vided by the simple models is basically correct. Therefore without doubt it is ex
tremely useful to study this picture, provided a healthy scepticism of the fine details is 
maintained.

3. Simplified equations of stellar structure
Assuming the star to be static and spherically symmetric, the equations of stellar 
structure may be written,

dp Gmp 
dr r2 ’ 

(3.1)

dm A o
—— = 4nr p, 
dr

(3-2)
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(3.3)

(3.4)

where r is a radial coordinate, p, Q, and T are pressure, density, temperature, and 
the intermediate variable m is the mass enclosed within the sphere r = constant; in 
addition L(r) is the internal luminosity (the integral of the energy flux over the 
surface of the sphere r = constant) and E is the rate of generation of thermal energy 
per unit mass by nuclear reactions. If the star were slowly expanding or contracting, 
on a timescale much greater than the characteristic dynamical timescale of the star, 
the hydrostatic equation (3.1) would remain valid but a work term would need to be 
added to the energy conservation equation (3.4). The function F in the energy trans
port equation (3.3) depends on whether the radius at which it is defined is in a 
radiative or a convective region. In an optically dense radiative region

F =
3npL

167rr2 acT3 ’
(3-5)

where x is the Rosseland mean opacity, a is the radiation density constant and c is 
the speed of light. In convective cores and throughout most of the convective en
velopes of dwarf stars the stratification is essentially adiabatic, and 

F ~ —T
dlnT\
31 np )

GmpT
r2p

dlnT\
(3.6)

the partial thermodynamic derivative being taken at constant specific entropy 5.
Equation (3.6) is invalid in the nonadiabatic boundary layers at the edges of 

convection zones. Ehe boundary layer most significant to stellar structure is probably 
that at the top of convective envelopes, in and immediately beneath the photospheric 
layers. For my limited purposes I shall not need to know the detailed stratification of 
those boundary layers, so 1 shall not need to discuss the prescriptions that are 
employed to calculate it.
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Notice that the Reynolds stress associated with the convective motion has been 
omitted from the hydrostatic equation (3.1). That stress is important only in the 
subphotospheric superadiabatic boundary layers of convective envelopes, whose de
tails I have already decided to ignore.

Finally I must add an equation of state. The perfect-gas law is an adequate 
approximation for my purposes:

(3-7)

where 3? is the gas constant and p is the so-called mean molecular weight of the 
stellar material; I ignore degeneracy and radiation pressure: These are small in sun
like stars, and I wish to keep the discussion simple. If all species were completely 
ionized

M-1 = 2.Y + |y + (3.8)

where X, Y and Z are the relative abundances by mass of hydrogen, helium and 
heavy elements respectively.

4. Stellar scaling laws
Because the right-hand sides of Equations (3.1 )-(3.7) are all products or quotients of 
variables, one can seek scaling laws that preserve the functional form of the solution. 
That would require also that E, x and p can also be similarly expressed; strictly 
speaking that is not the case, but one can make progress with power-law approxima
tions provided the range of variation of conditions is not too great. In particular, I set

e = CopT11

K = KOpXT~1'

(4.1)

(4.2)

P = Po (4.3)
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where Eo, x0, Po are functions of X, Y and Z.
One now seeks homologous transformations of a solution to the structure equa

tions. For any dependent variable q, say, one sets

g(r) = Qq{x\ (4.4)

where x = r/R, R being the radius of the star, and demands that the function q(x) is 
independent of the scaling factor £). Eq. (3.2) implies that Q scales as M/R3. I hen 
Equations (3.1) and (3.3)-(3.7) require the scaling factors to satisfy the relations

PR-1 oc GMR~2 (M/R3), (4.5)

TR-1 ex F, (4.6)

LR-' ex e0 R2 (M/R3)2 T", (4.7)

where

F«K0J?-2(Af/7?3)1+AT-(3+-)jr (4.8)

in a radiative star, or

F <x poGMT?"2 (4.9)

in a convective star, and

P « (M/R3) T. (4.10)

In a fully convective star the hydrostatic scaling apparently decouples from the 
energy scaling; relations (4.6) and (4.9) combine to reproduce relation (4.10) — 
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indeed, relation (4.9) was derived essentially by requiring that to be so — leaving the 
system (4.5)-(4.7), (4.9) and (4.10) incomplete. The system is closed by considering 
the radiative balance in the photospheric regions, thereby relating the energy flux F 
to the physical state of the atmosphere (e.g. Hayashi, Höshi and Sugimoto, 1962). 
Note that the scaling factors Al and L apply to the luminosity and mass variables 
for any fixed value of x, and in particular for x = 1. They are, therefore, measures 
of the total mass and luminosity of the star.

I should point out here that few stars are convective throughout, and no stars are 
everywhere in radiative equilibrium. Therefore these scaling laws cannot hold exact
ly, even if the simple approximations (4.1)-(4.3) were exact. Nevertheless, if a star 
were dominated by either a radiative or a convective zone, one might hope that the 
scaling laws were roughly valid, at least for that zone. It is with this hope, though in 
recognition of possible pitfalls, that my discussion proceeds.

Equations (4.5)-(4.10) can be solved to determine how R and L depend upon 
Al and the coefficients po, £0 and Xo. Except for very low-mass stars, most of the 
structure is determined by the radiative equilibrium condition (4.8). Then

7? CK (moG)*’“1'“4**' (jOKo)‘ (4.11)

where

Å: — (// — p + 3Å + 3) 1 , (4.12)

and

(4.13)

where the exponents a, b and e {a no longer being the radiation constant) are given 
by

a = t? - (77 + 3)(7/ - v - A)k

6 = (77 + 3)fc — 1

e = tj + 2 — (77 4- 3)(77 — v + A — l)k.

(4.14)
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It is useful to rewrite the scaling laws in terms of chemical composition. To this end 
we note that E^X2 with q — 4 for the proton-proton chain, and recall Equations 
(4.3) and (3.8) determining m,. For stars somewhat more massive than the sun, the 
CNO cycle dominates the thermonuclear energy production and Eq^XZ with q — 
16. If opacity is dominated by bound-free or free-free transitions, Kramers’ opacity 
law holds: X = 1 and v = 3.5. When bound-free transitions dominate (as for young 
Population I stars), x0oc(14-X)Z, whereas when free-free transitions dominate (as 
for extreme Population II stars), then Xq^IH-X. The sun is between these two ex
tremes; for sun-like stars I shall adopt the approximation x()oc (1 +X)Zd, with d — 
0.5. [In very massive stars where electron scattering dominates, Xq^I+X, X. = 
0 and v = 0.] Provided that only a limited range of X and Z are considered, these 
formulae can be approximated by power laws. Thus, Equation (4.13), for example, 
can be rewritten

L <x G“ X~{Z~9Me, (4.15)

w'here

5dJVo 26 -f- (36 -F l)Ao
3 4- 5Xq 1 + Xq

(4.16)

Xo being a typical value of X, and g = (\+b)d, which varies between 0 and 
14-6 depending on the processes that dominate the opacity. In deriving Equation 
(4.16), which was carried out simply by equating the logarithmic derivatives of L 
given by Equations (4.13) and (4.15), Z was ignored in the expression (3.8) for jIq.

As an example I evaluate the expressions for L for sun-like stars, taking X, — 1, V 
= 3.5, q = 4 and Xo — 0.7. Equations (4.13) and (4.15) then become

L oc (poG)7'8 eo ° ‘>8«;p1M5'5 <x G7-8X_4-8Z_0-55Af8-5. (4.17)

The corresponding result for somewhat more massive stars powered by the CNO 
cycle (q — 16) but with the same composition and opacity law is

L ex (MoG)7'3e^O O3Kol oM5'2 <x G7-3X~5-8Z-°'5M5-2. (4.18)
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Some care should be exercised in interpreting Equation (4.11), For upper main se
quence stars the formula is roughly correct, with R being interpreted as the radius of 
the star. But lower main-sequence stars have extensive convective envelopes, which 
cause them to deviate from a homologous sequence. For a sun-like star the convective 
envelope, though extending over a substantial fraction of the radius (about 30 per 
cent in the case of the sun), has very little mass (and therefore very little weight), and 
does not have a serious influence on the radiative interior. Equation (4.11) might 
therefore be used as a rough guide for determining the characteristic scale of variation 
of the radiative interior, and hence Equation (4.13), which depends on that scaling, 
remains approximately valid. However, the convective envelope causes the radius of 
the star to be less than what it would have been had convection not been operative, 
and the increasing relative extent of the convective envelope as M decreases there
fore implies that the actual radius R increases more rapidly with M than is sug
gested by Equation (4.11). The dependence on X and Z is modified too, because 
the extent of the convection zone is determined partly by opacity. This behaviour is 
strictly nonhomologous: to obtain analytical estimates of the stellar radius requires a 
considerably more sophisticated discussion than that which I am attempting here. In 
practice stellar models are commonly computed using a relation between heat flux 
and temperature gradient in the convection zone based on a mixing-length formal
ism, and the resulting stellar radius depends not only on M and the quantities 
p 0G, e0 and x0, but also on a parameter a, the ratio of mixing length to pressure 
scale height, which is usually regarded as a constant. Thus 1 write

For sun-like stars h — — 1, j — -0.5, zz — -0.2 and v — 1.2. The exponent v 
declines to about unity as A/ decreases below Mq. For high-mass stars v — 
0.75. The transition between the two extremes of mass occurs for stars of about a 
solar mass and somewhat higher, and is determined partly by the diminution of the 
extent of the convective envelope as M increases, and partly by the transition from 
the p-p chain to the CNO cycle. As I pointed out above, the luminosity L is quite 
insensitive to the structure of the convective envelopes of sun-like stars, so I add no 
dependence on a to the scaling (4.17).

Finally, I point out that the slope of the main sequence in the Hertzsprung-Russell 
diagram (actually the log L - log Te diagram) can be obtained from the scalings 
(4.15) and (4.19) and the black-body radiation law:

L = 4ttR2(tT^ (4.20)
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where o is the Stefan-Boltzmann constant, and from here on L will be regarded as 
the (surface) luminosity L(R) of the star.

5. Main-sequence evolution
The transmutation of hydrogen into helium causes X to decrease. Thus, p.o in
creases, and e0 and Xo decrease, causing L, according to the scaling (4.13), to rise. 
The major influence is through the variation of Po, whose increase demands a higher 
core temperature to produce pressure enough to support the weight of the star above. 
The evolution of the star is not homologous, however, because the nuclear reactions 
take place only in the inner core, where the temperature is high. Lower main- 
sequence stars have radiative cores, and the products of the nuclear reactions remain 
in situ; in upper main-sequence stars the core is convective, which homogenizes its 
chemical composition, but the reaction products do not mix into the radiative en
velope. Thus in either case the increase in po occurs only in the innermost regions of 
the star. Nevertheless, it is instructive first to assume the star to follow the homolog
ous scaling law (4.13), and afterwards to consider the errors introduced by that 
assumption. Such an analysis was carried out by Strömgren (1952) for upper main- 
sequence stars, which at the time were believed to be fully mixed by rotationally 
induced (Eddington-Sweet) circulation currents.

The rate of change of the hydrogen abundance is given by

(5.1)

where E — 0.007c2 is the energy released per unit mass in converting hydrogen to 
helium. When coupled with the relation (4.13) and the appropriate expressions 
for p.o, 80 and Xo, this determines how X and L vary with time t . The formula 
for x0 may be evaluated at constant Z, since the effect of nuclear reactions on opaci
ty has only a small influence on the structure of the star. The resulting equation is 
rather cumbersome to solve, but it can be simplified substantially if the scaling law 
(4.13) is replaced by the exponential approximation

L = Lq exp [-ß [X - X0)] , (5.2)

where Xo and Lo — £(T0) are constants whose values are characteristic of Å and 
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L [and which in practice I shall take to be the initial values of X and L\ , and ß is 
a constant of order unity w'hich is determined, like f , by equating the logarithmic 
derivatives of expressions (4.13) and (5.2) at the initial value Xo of X. Thus, for 
example, taking x0°cl+A' (at constant Z) and assuming the p-p chain to dominate 
the nuclear reactions,

5a 2b 1 + 6
3 + 5X0 + + 1 + Xo' (5.3)

Using the values of a and b calculated for formular (4.17), with Af) — 0.7, which 
are characteristic of sun-like stars, yields ß = 6.8.

The integration of Equations (5.1) and (5.2) is straightforward, yielding

X = Xo + ß 1ln(l-//rn), (5.4)

L = Lo (1 - t/rn) 1 , (5.5)

where T„ is a characteristic nuclear timescale:

EM
(5.6)

and I have chosen the constant of integration such that X = Xo, L = Lo nt t - 0. 
Note that according to Equation (5.4), the time tn at which hydrogen is exhausted is 
given by

(5-7)

In practice the evolution is not homologous. Indeed, the inner regions of the star 
contract, as the scaling (4.11) suggests, whereas, according to the scaling (4.19), the 
outer regions of a sun-like star expand. Nuclear reactions modify the composition in 
only the central regions of the star, and consequently in those regions X varies
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Fig. 1. The thick continuous curve illustrates the evolution of the solar constant 7(Z)KZ. according to 
Equation (5.8), normalized to the present value 7©. The thin (almost horizontal) continuous curve shows 
the evolution of 7/7© with LILq given by Equation (8.4) when the gravitational constant declines 
according to Equation (8.1), with q = 1 and Tg(T) = 1.2 X 10”y. (A very similar result is obtained 
with q = 0.1 and Tg = E3 X 10Hy.) The dashed curve is 7/7©= L/Lq, given by Equations (9.3) and 
(9.4), for a model losing mass according to Equation (9.1) with Zo = 0.05t© and A = 0.45. The initial 
luminosity is Lo = 5.8Z,©. The two models with varying G or M both satisfy /,(/©) = Lq.

substantially more rapidly than predicted by Equation (5.4). L varies more rapidly 
than predicted by Equation (5.5), but the discrepancy is not as great as for X. In
deed, in the case of the sun Equation (5.5) fits numerical computations very well 
if Tn is replaced by T© = EM/^Lq, yielding

L ~
Z° Lq

1 - 0.3Z//0 ~ 1 + 0.4(1 -///©)’ (5-8)

where /© and Lq are the current age and luminosity of the sun. The right-hand side 
of Equation (5.4) then estimates the variation of the mean hydrogen abundance of the 
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star. Equation (5.7) can no longer be used to estimate accurately the main-sequence 
lifetime, however, because that is determined predominantly by conditions in the 
core, though it is likely that T© scales in roughly the same way as T„. According to 
Equation (5.8), />(/) increases monotonically with t from its initial value £0 — 
0.7 Lq. Thus T„ — 1.3Tq. The variation is illustrated in Figure 1.

6. Calibration of solar models
Equation (5.8) describing the temporal variation of the solar luminosity L has been 
calibrated such as to give the observed luminosity Lq at the current age /©. When 
computing theoretical models, that calibration is carried out by adjusting the initial 
composition. Usually Z/Xq is specified and then is adjusted to give the correct 
luminosity. As mentioned above, in practice it is necessary also to adjust the mixing
length parameter a in order to obtain the correct radius A©, but since changing 
a hardly influences the structure of the radiative interior I ignore it here.

To estimate how Xq, or equivalently the initial helium abundance Fo, must be 
adjusted, one can use the homology scaling law (4.17) keeping L and M (and, of 
course, G) constant. Once again taking Xq = 0.7, one thus obtains

din Yo _ Azo dlnA0
01n(Z/Xo) ” _1 - -Vo ain(Z/.¥o) (6.1)

This is the same as the value computed numerically by Bahcall et al. (1982) from 
standard solar models.

One can estimate how L(t) is affected by changes in chemical composition using 
the arguments of the previous section. First, if one assumes evolution to be homolog
ous, then the only modification arises from the dependence of ß on Xq. In particular 
it is straightforward to demonstrate from the relations (4.17) and (5.3)-(5.6) that the 
initial luminosity Lq satisfies

d In Lq 
din/3

~ -0.3,
din Lq 

dln(Z / Ao)
~ 0.02. (6.2)

In reality, however, the evolution is not homologous, and the star evolves more
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rapidly than is predicted by Equations (5.3)-(5.6). This causes the sensitivity of 
to ß and Z/Ao to be some 70 per cent greater than is given by Equations (6.2).

7. The solar neutrino flux
In principle the solar neutrino luminosity Lv provides an additional parameter for 
calibrating solar models. As is well known, that calibration yields an unacceptably 
low value for the initial helium abundance Yo . However, in any discussion of the 
solar interior it is important to bear in mind the value of Åv, at least in order to relate 
it to predictions based on what I might call standard physics (in which, for example, 
neutrinos are taken to be massless).

According to standard theory, the dominant contribution to the neutrino flux 
measured by Davis’s chlorine detector comes from the decay of B in the p-p III 
chain. I shall therefore discuss only that contribution, Åv8, to Ly. If one assumes 
that evolved theoretical solar models scale homologously under variations of compos
ition, it follows that Åv8 is simply proportional to the abundance A8 of SB. By 
balancing the nuclear reactions of the p-p chain it can easily be shown that the latter 
is given approximately by

x8 oc LlAx2pT24'5 (7.1)
1 + A

(e.g. Gough, 1988). The homology scaling laws of section 4 can now be used to obtain

L„e <x G-10-7M-ll f,Le i (Z/Xo)'^ oc G_13-6M13'8L6'3Z2 0. (7.2)

Once again, I have taken d = 0.5 in the opacity formula and have evaluated the 
exponents for Xo = 0.7. For comparison, partial derivatives quoted by Bahcall and 
Ulrich (1988) for their standard solar model are

dln£p8
dln£ z/x0

= 6.8,
din £„8 \

dln(Z/Xo)J (7-3)

The signs of the exponents are easy to understand. First, notice from the propor
tionalities (4.17) that increasing either X or Z/A decreases L, requiring that any 
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increase in Z/,¥ requires a compensating decrease in X, given by Equation (5.1), to 
maintain the current value of L at the observed value Lq. An increase in Z/X leads 
to a greater opacity, despite the increased hydrogen abundance, and consequently a 
greater temperature gradient in the radiative interior. Therefore T is increased in 
the core. This is consistent with the requirement from the nuclear reactions that a 
lower concentration of fuel demands a higher temperature to keep the luminosity 
at Lq. It is evident from the relation (7.1) that £v8 is both a decreasing function 
of X and an increasing function of T; the dependence of Q on X is quite weak and 
therefore plays only a minor role. Consequently £v8 decreases with X and increases 
with Z/X at constant L.

The dependence of Z,v8 on t cannot be inferred from the simple scaling laws I 
have been using. The reason is that deviations from homology brought about by the 
variation of composition in the core increase the central temperature by more than 
the scaling laws imply, and since £v8 is so very sensitive to T (and therefore nearly 
all the ’’ B neutrinos are produced in a small region around the centre of the sun), this 
dominates the variation of £v8. Thus, it is perhaps not surprising that if the sun 
were, say, older than is generally presumed, the increase in Z,v8 caused by the greater 
inhomogeneity would dominate the compensating decrease due to the increase in 
Xq resulting from the solar calibration: L = Lq at t — /©. Here I simply quote the 
result from numerical computations reported by Bahcall and Ulrich (1988) for cali
brated solar models:

din Lp8 
din /q

(7-4)

8. Temporally and spatially varying gravitational constant 
Having discussed the principal aspects of standard main-sequence evolution, we are 
now in a position to estimate the consequences of relaxing some of the assumptions 
listed in section 2. I shall discuss two examples explicitly: in this section, that the 
gravitational constant G is not constant, and in the next section, that the mass A/ of 
the star is not constant.

In some cosmologies the gravitational constant decreases with time (using units of 
mass, length and time in which Planck’s constant and the speed of light are constant). 
Since, according to the relations (4.17) and (4.18), L is a strongly increasing func
tion of 6', a declining gravitational constant would imply that main-sequence stars 
were considerably more luminous in the past than Equations (5.5) or (5.8) imply. 
The modification that is made can be estimated from an analysis similar to that in 
section 5.
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The variation of G can often be represented by an equation of the form

G(O
G(T„) (8.1)

where Tu is the age of the universe, t' is time measured from the Big Bang and q is 
a constant. Typically 0 < q 1. For the evolution of a homogeneous star, Equation 
(5.1) still holds, but Equation (5.2) must now be replaced by

where a is given by Equation (4.14). Hence

/3(X-Xo)É^

dt'
Lo aq

ME \TU)
(8-3)

How M varies with t' depends on the cosmology. In most discussions it is constant, 
and 1 shall assume that here; I discuss a variation of M separately in the next 
section. It is then straightforward to integrate Equation (8.3) to determine the varia
tion of X, and thence to substitute the result into Equation (8.2) for the luminosity. 
If I specialize to the case of the sun, the result may be written

L XTU
(aq - l)r0

where

IQ =
EM ~ 1.5 x 1010t/ (8-5)

(8-4)

and, as was the case previously, t = t' — (Tu-to) is time measured from the ‘zero-age’
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main sequence. In Equation (8.4) I have introduced a factor X to account for devia
tions from homology resulting from the inhomogeneity in the core that results from 
nuclear transmutations. (It is hoped that there will be no confusion with the exponent 
of p introduced in Eq. (4.2) to represent the opacity). For equation (8.4) to be a 
solution of Equations (8.2) and (8.3) describing homogeneous evolution, X must be 
set to unity; but for the more realistic inhomogeneous case, X > 1. It was pointed out 
at the end of section 5 that standard solar evolution with G constant is well de
scribed by Equation (5.5) with T„ replaced by T©, which is equivalent to setting X 
= 1.4. Thus we should expect Equation (8.4) with X = 1.4 to provide quite an 
accurate description of solar evolution when G satisfies Equation (8.1), as indeed it 
does (c.f. Pochoda and Schwarzschild, 1964; Ezer and Cameron, 1965; Roeder and 
Demarque, 1966; Shaviv and Bahcall, 1969).

Because L is an increasing function of G, the effect of the variation (8.1) of G is 
to augment the past luminosity. For values of q and Tu of typical cosmologies, this 
predominates over the influence of the varying chemical composition represented by 
Equation (5.8), and L now decreases with time. A very high luminosity in the past 
would have severe implications for the Earth’s climatic history, and can probably be 
ruled out. However, climatologists have had difficulty reconciling the relatively low 
past luminosity that is a consequence of standard physics, and it is therefore of 
interest to ask what values of q and Tu are required to maintain the solar irradiance 
on Earth at roughly a constant value. In carrying out that calculation one must take 
into account the influence of G on the radius R® of the Earth’s orbit. Since the 
timescale Tc = —G/G (where the dot denotes differentiation with respect to time) is 
very much greater than the Earth's orbital period, Ä® is determined simply by the 
(Newtonian) orbit equations in which G is ignored and angular momentum (the 
adiabatic invariant) is held constant: thus Rq> o^G-1. The solar irradiance on Earth 
(the solar constant) is thus proportional to F = \G(t')/G(TU)]2L. The values of 
q and Tu required to hold F approximately constant are then such that Xg(Tu) = 
q~xTu=^ 1.2 X 10Hj; the precise value is only very weakly dependent on the value 
of q. An example of F(t), for q = 1, is illustrated in Figure 1.

Another possible modification to the theory of gravitation is that the potential V at 
a distance r from a point mass M is given by 

V = GM/r (8.6)

where

G = [1 + a exp (-r/7?G)] Goo, (8.7)
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where RG is of order 102m. For r « RG and r » RG the inverse-square law of force 
applies, but for astronomical distances the gravitational constant is (1 + Ct)-1 of the 
value measured in the laboratory. Since it is GM that is measured astronomically, it 
follows that the mass of the sun would be I + ä of the usually accepted value. 
If ä and Goo are independent of time, the main-sequence evolution must simply 
follow Equation (5.8), though of course the adjustment of the chemical composition 
to obtain L = Lq at I — t@ would be different. The neutrino flux would also be 
somewhat different; according to the scalings (7.2),

£„8 <x (1 + S)-11 (Z/X0)18 oc (1 + a)-0'2 Z20 (8.8)

at fixed GM and L. This result is to be compared with the numerical computations 
of Gilliland and Däppen (1987), who find <?lnZ,v8/<?ln( 1 +ct) = —1.2 at constant 
Z. For the small value of ä suggested by geophysical data, about —7 X 10-3 (Fish- 
bach et al., 1986), the effect on Lv& is negligible.

9. Evolution with mass loss
The second example I discuss is the consequence of losing mass, by a wind, during 
the early stages of main-sequence evolution. This possibility has been modelled 
recently by Guzik et al. (1987), who considered the implications for the sun. Here I 
consider a mass variation of the form

M 1 + Ae_z//o
1 + Ae-<ø/*° ’

(9.1)

where A and the characteristic mass-loss timescale t0 are constants. This is similar 
to the variation considered by Guzik et al. for two of their three mass-losing models. 
Once again Equation (5.1) holds, but now Equation (5.2) is replaced by

(9-2)

where, according to the scaling (4.17), e — 5.5. Integrating these equations leads to
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(9.3)

{1-^(1+Ae_'S/<,>) Ue-l(t/*0)--Te-l(W«0)]}

where1

1. Integrals Ia defined by Equation (9.4) can easily be generated for integral values of a from the 
starting value /0 = x using the recurrence relation Zo = Zo_| —(J_l(l+Ae~*)°. Ia is a continuous func
tion of o, and for the parameters considered here is quite accurately determined for nonintegral values 
of o by linear interpolation of log la between the integral values. Thus for all the results reported 
here, /45 was approximated by the geometric mean of /4 and Z5.

I<r(x) = / (1 + Ae-*)*7 tfø (9.4)

and Tø is given by Equation (8.5). I have again introduced the factor Å. into the 
equation for the luminosity to account for the deviations from homology.

As with the case of a declining gravitational constant, mass loss causes the star to 
be more luminous in the past than is predicted by standard theory, because L is a 
rapidly increasing function of M. For the short timescales t0 and the substantial 
initial mass (2A/©) considered by Guzik et al., there is first a rapid decline in L due 
to the decline in M, followed by the gentle rise, essentially at constant M, de
scribed by Equation (5.8). The initial phases of evolution are not very well described 
by Equation (9.3), because the star is powered predominantly by the CNO cycle in 
its high-mass phase. Thus £0 is overestimated by the formula. However, the formula 
(9.3) should be a good description for cases in which MQ is not very much greater 
than Mø.

Once again we can ask what parameters are required to maintain the luminosity of 
the sun at approximately a constant value throughout its main-sequence evolution. 
This can be carried out by demanding, for example, that Z(f©) = Lq, where

£(/) = /-1 f L(t)dt (9.5)

Jo

is the time-averaged luminosity. One thus determines a relationship between the 
initial mass Mo = M(0) and the mass-loss timescale t0. Provided t0/tQ is not very 
small, Mo varies slowly and is such that L(f) is approximately constant. Indeed, as 
Z0/Zø increases, Mo tends to a limit for which £(0) — Lq, which can be estimated 
from the scaling law (4.17) taking due account of the hydrogen consumed at con-
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stant L in excess of that of the standard model. With the help of Equation (5.5) 
with x„ replaced by T©, this can be written

~ 1.08,

where AOst is the initial hydrogen abundance of the calibrated standard model and

Lat (/©) = -^y^-ln fl + —~ 0.83£q
(9.7)

is the mean main-sequence luminosity of the standard model. When Zo/Z© « 1, the 
mass of the model quickly approaches M0, and the evolution then follows that given 
by Equation (5.8). Thus in this case it is not possible to maintain L at an approxi
mately constant value. The constraint L(to) = Lq demands a very luminous inital 
phase, of relatively high mass, as is depicted in Figure 1 for the case Zo/Z© = 0.05.

10. A further comment on the neutrino ßux
Although the precise profile X(x,to) at the present time must depend on the detailed 
history of the star, the main factor influencing it is the total amount of hydrogen 
consumed. This is proportional to the evolutionary age

T — t l^ms (10.1)

where the main-sequence lifetime Zms is a characteristic time taken to deplete hydro
gen in the centre of the star2. It is evident, therefore, that the principal effect of a 
decreasing mass or gravitational constant is simply to make the sun look older by 
roughly a factor LIL^. (The adjustment due to changes in Zms resulting from re
calibrating Xq is relatively small). According to the dependence (7.4), this increases 

2. A convenient precise definition of /ms is twice the time to deplete the central hydrogen abundance to 
half its initial value.
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the 8Z? neutrino flux by a factor (Å/Zst)1,3, which represents an increase of 30 per 
cent for the models with L = Lq such as the two represented in Figure 1.

11. Seismological analysis
High-order p modes of low degree have been measured from whole-disk Doppler and 
intensity observations of the sun, and it is likely that similar observations will be 
successfully carried out on other stars in the near future. The cyclic frequencies V of 
oscillations of degree I and order n satisfy for n » /:

P ~ (,Z + 2f + E) ------n+lf_|_£ "o + -> (1U>

where
-1

Z^o =

and

1 de 
—— dr 
r dr

4 - 1
47F2Z7o

(e.g. Gough, 1986). Here c(r) is the adiabatic sound speed in the star (rather than 
the speed of light), and e and B are constants of the model that depend mainly on 
conditions in the very outer layers. (Note that £ introduced here is not to be con
fused with the nuclear energy generation rate.) The lower limit of integration rt in 
Equation (11.3) is the radius of the inner turning point of the oscillation eigenfunc
tion, and is given by

c(rt) /rt = 27fp/£. (11.4)

The upper limit, R, is to be interpreted as the radius at which v = vc, where
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(11-5)

H being the density scale height; for the high-order modes considered here, R is 
only very slightly less than the radius of the photosphere. Expressions (11.1)-(11.3) 
with rt = 0 and R equal to the radius of the star can be deduced from the asymptotic 
analysis of Tassoul (1980), and as nil —> 00 this is formally equivalent to taking 
rt and R as the turning-point radii.

Only modes with I 3 are likely to be observed in stars other than the sun, at least 
initially, and from these can be constructed the quantities

- yn-i,e -
x ! A£(£ + l)-B

v0 - Vq, (11-6)

dnt —
3

2£ + 3 - ^n-1 £+2) —
6 Av$

3 [R 1 de ,
—---------7----------------  I----- dr

27f2 (n + + e) Jrt r dr

and 

V0
(n + Z/o - £ +

B £(£ -f- V)dn£ 
n + + £ 6z/0

(H-8)

where, for simplicity, I have neglected in Equation (11.7) the small first term in 
square brackets in the expression (11.3) for A, and I have also ignored the I depend
ence of q. The quantity An/ is an integral property of the entire star, dn/ depends 
predominantly on conditions in the core (since it is an integral of the sound-speed 
gradient weighted by r-1), and E+R/(n+'/2l+E) is a functional of the stratification 
principally in the surface layers.

I must emphasize that the asymptotic relations (11,6)-(l 1.8) are not accurate. In 
particular, the (tz + 'äZ+e)-1 dependence of the small frequency separation d„i is not 
well satisfied by either numerically computed eigenfrequencies or the solar frequen-
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Fig. 2. Superposed power spectrum of solar whole-disk Doppler data obtained by Grec el al. (1980). It is a 
(somewhat optimistic) representation of what might soon be available from observations of other stars. 
The diagram is obtained by dividing the frequency axis into intervals (v„_b v„), where v„ = 136n 
pHz, and summing the power. The dissection interval (136pHz) was chosen to maximize some measure of 
overlap of the peaks, and determines A. The double-headed arrows represent d0 — lOpHz and (5/3)«/| 
— 17pHz; the location of the I = 0 peak (177pHz) determines O (— 1.30).

cies; this inaccuracy is due partly to the neglect of buoyancy and the perturbation of 
the gravitational potential in the asymptotic analysis, both of which are strong
ly I dependent. Nevertheless, Equations (11.6) and (11.7) do give some idea of the 
dominant term that determines the dependence of the measured quantities on the 
structure of the star, and I shall use them in this discussion as a guide to understand
ing more accurate quantitative comparisons.

The first stellar observations to reveal a profusion of high-order p modes are 
unlikely to resolve modes of different degree with like zz + !4Z; the frequency 
difference d„t is only of order lOpHz. However, since groups of modes with like 
n + 'A are approximately uniformly spaced in frequency, a superposed frequency 
analysis of the kind first carried out by Grec et al. (1980) for the sun (illustrated in 
Figure 2) is likely to yield average values A, d and 0 of A„/, dni and <!>„/, from 
which v0, A and a measure of the surface conditions can be estimated. Since the 
physics of the outer layers of stars is very complicated and ill-understood, O,,/ has 
not been satisfactorily reproduced theoretically even for the sun. I shall therefore 
confine my discussion to A and d.
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12. The solar calibration
From the discussion in section 6 it is evident that standard solar models form a one- 
parameter sequence, which can be labelled by, say, the initial helium abundan
ce Yo. This assumes, of course, that the age t® of the sun since the zero-age main 
sequence is known. Knowledge of A or d therefore affords a basis for selecting the 
most representative model. The first attempt to calibrate y0, using both A and 
d, failed to produce consistent results (Christensen-Dalsgaard and Gough, 1980): a

Source ^o(^Hz)

Observations 9.2±0.6 9.7
Standard solar models 10.3±0.3 10.0±0.6
Diffusively mixed models 15.5±2.0 13.6±2.3
Helium-deficient model 13 11
Model with varying G 9.0 9.2
Model with mass loss 9.0 9.2
Wimp-infested model 9.3±0.3 9.0±0.3

Table 1. Mean normalized solar p-mode frequency separations <7;, which are averages over n of the 
quantities dnl defined by Equation (11.7). The observations are averages of d\ from Claverie et al. (1981), 
Grec et al. (1983), Woodard and Hudson (1983) and Harvey and Duvall (1984) ± one standard deviation 
of the results quoted, taking no account of the (generally smaller) estimated observational errors. The 
separations for standard solar models are averages of the results of Christensen-Dalsgaard (1982) and 
Ulrich and Rhodes (1984) ± one standard deviation of those results taking no account of computational 
inaccuracy. The values of di for diffusively mixed models are averages of the results taken from Ulrich and 
Rhodes (1983), Berthomieu et al. (1984), Christensen-Dalsgaard (1986) and Cox and Kidman (1984); the 
standard deviations are higher here because the authors did not all make the same assumptions about how 
material was mixed. The entries for the model with wimps were taken from the estimates by Faulkner et al. 
(1986) and Däppen et al. (1986) of frequencies of a model by Gilliland et al. (1986). The helium-deficient 
model is that with Fo = 0.19 computed by Christensen-Dalsgaard, Gough and Morgan (1979). To provide 
a meaningful comparison the theoretical separations quoted here were computed by averaging the 
differences from the standard models obtained by each author and adding the result to the mean values 
quoted in the second row of the table. The models with decreasing G and decreasing M are those 
illustrated in Figure 1, for which £(Zq) = Lq.

calibration based on A yielded a low value, about 0.19, for Fo whereas, as can 
easily be deduced from the entries in Table 1, a calibration based on d yields y0 — 
0.27. Since d depends primarily on conditions in the core where the chemical com
position has been modified by nuclear reactions, whereas A depends on conditions 
throughout the star including the uncertain outer layers, one might at first sight put 
more trust in the value of d, despite the fact that the low value of Yo based on A 
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yields a value for the neutrino flux which is not significantly at variance with observa
tion. In the case of the sun, this opinion was upheld by a calibration using high- 
degree modes (Berthomieu et al., 1980), but I shall not discuss that here since such 
modes are not going to be observed in other stars in the foreseeable future. Suffice it 
to say that a recent computation by Ghristensen-Dalsgaard et al. (1988) using an 
improved equation of state, which differs from previous equations of state mainly in 
the upper layers of the convective envelope, has diminished the inconsistency sub
stantially, and thus suggests that the higher value of To is more-or-less correct.

It is important to realise that the standard view of main-sequence stellar evolution 
may not be correct, or that the generally accepted value of Z© may be in error. So far 
as the influence on d is concerned, the major factor is the profile of mean molecular 
weight p(r,Z), which influences the sound speed c. Let us assume the perfect-gas 
law, so that

(12.1)

where y is the adiabatic exponent (<91n/?/dlnp)s, the derivative being taken at con
stant specific entropy s. Then since the dependence of the nuclear energy generation 
rate on T is quite sensitive, the gross structure of the star tends to constrain the 
variation of T quite severely, leaving p to have the major influence on c.

We are now in a position to make a rough estimate of the variation of d with time. 
By estimating the variation X(r,Z) from the hydrogen depletion by nuclear reactions, 
and considering the outcome to be but a small perturbation from an homologous 
evolution, the variation of d for late-type stars (with radiative interiors) is given 
approximately by

d(r) ~ (1 — (12.2)

where llJ is a constant whose value (about 0.7 for sun-like stars) can easily be 
estimated from numerically computed stellar models, and d is the value of d for a 
homogeneous stellar model of the same mass and radius. Thus one might expect d to 
scale approximately according to the homology relation

d oc R~^ (12.3)
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where, since d is determined mainly by conditions in the radiative interior, R should 
be expected to characterize the interior scale rather than the entire star. The 
separation A, on the other hand, which depends more sensitively on the outer 
regions of the star where c is relatively low, is not substantially affected by the details 
of the p profile in the core, and would be expected to scale as

A oc M 2 R 2, (12.4)

where R is the stellar radius. In practice, the relation (12.4) is quite well satisfied, 
whereas the relation (12.3) is best approximated with a value of R that is intermedi
ate between the stellar radius and that given by the homology law (4.11) which is 
presumed to represent the scale of the radiative interior. The appropriate R in
creases as the star evolves, and therefore d decreases with time. If one ignores the 
difference in the meanings of R in Equations (12.3) and (12.4), it is evident that the 
nonhomologous component of the evolution is characterized by

<5 = cZ/A ~ 1 — ff'r. (12.5)

As Ulrich (1986) has pointed out, this is a more direct measure of the evolutionary 
age.

As I mentioned earlier, the asymptotic formulae for the frequency separations 
A and d are not accurate enough for computing reliable theoretical values for com
parison with observation. However, they are adequate, and indeed often very useful, 
for a first estimate of the frequency change produced by some variation to a stellar 
model. For example, as shown in Table 1, the value of d computed from the stan
dard model 1 of Christensen-Dalsgaard (1982) is about 0.9pHz higher than the 
mean of the solar observations.3 It is clear from Table 1 that at the present level of 
reliability of both the theory and the observations the discrepancy is not significant. 
Nevertheless, it is evident that that discrepancy could actually be removed if the sun 
were somewhat older, by an amount

3. Exactly how the averaging of dn, is carried out to obtain d is not important for this discussion; all that 
is important is that the averaging be carried out in the same way for all data sets to be compared.

tZlntZ\ 1
J Inf J (12.6)
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where d is measured in pHz. In making this estimate I ignored the contribution 
arising from the change in A required to maintain the observed luminosity; that is 
very small, as can easily be deduced from Equation (5.8) and the scaling (4.1 7). Thus 
from Equation (12.2), the scaling law (12.3) with R being the solar radius, and the 
temporal derivative of R quoted in Table 2, one obtains ÖZ = 6 X IO8 y. Note, 
however, that gravitational settling of helium would also reduce d by increasing 
the u gradient, but I make no attempt here to estimate the magnitude of the effect. 
Settling of heavier elements increases the opacity in the core; this also increases the 
central condensation and hence reduces d, though the effect is likely to be less than a 
comparable settling of helium.

It is evident that we can now immediately estimate the value of d for the models 
with varying G or Af discussed in sections 8 and 9. As was recognized in section 10, 
it is the total amount of hydrogen consumed that is the principal determinant of the 
structure of an evolved main-sequence star, so that d can be estimated to be approxi
mately the same as that of a standard model of age (£/£st)/©. Hence, for the two 
models with L = Lq depicted in Figure 1, the age of the equivalent standard model 
would be £©/0.83, which is about 9 X 108 y greater than /©. Hence d is about 
1.4pHz less than the standard value, and is currently within the limits set by the 
observations. According to this analysis, the two models satisfying Equation (9.1) 
that Guzick et al. (1987) considered, with Zo = 1.3 X 108 y and 3.3 X 108 y and 
each with Af0 = 2Af©, have present values d = 8pHz and 6pHz respectively; these 
values are somewhat lower than the values 9.5pHz and 8.5pHz computed recently 
by Turck-Chiéze, Däppen and Casse (1988). The value of d for a model for which 
Equations (8.6) and (8.8) hold is influenced predominantly by the modification to the 
initial hydrogen abundance required for the solar calibration. Thus

d In d d\nd 31nXo (12 7)
3 In (1 + a) 31nXo 31n(l + a)’

the partial derivatives being taken at constant GM and Z/Xa. Using the values of 
the derivations in Table 2 one thus deduces a decrease in d below that of the stan
dard model of —l.lcuZ = 0.08pHz, if ä — — 7 X IO-3. This is consistent with the 
very small values found numerically by Gilliland and Däppen (1987).

I must point out that these simple scaling laws do not always give the correct 
result. For example, one might try to estimate the value of d for a helium-deficient 
solar model. Since, as was pointed out above, the nonhomologous contribution 
to d due to composition changes is small, two calibrated models with the same value 
of T have essentially the same value of d. Evidently /ms x Xo for models calibrated 
to have the correct luminosity, so ör/r = — <SX0/X0 at fixed L. In other words, a 
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model with a value of Fo that is, say, 0.08 smaller than the standard appears to be 
younger by O.O8To-1Z© = 5 X 10s y. Thus we would expect d to be about 
1.2pHz higher. As can be seen in Table 1, this is rather greater than the numerical 
calculations of d\ (d/ is an average over n of dni), but substantially less than the 
computed values of dG. The reason is presumably that neither the I — 3 not the / = 1 
modes, which determine d\, penetrate to the very centre of the star, whereas the I = 
0 modes do. So perhaps there is a severe nonhomologous influence very close to r = 
0.

Similar remarks apply to diffusively mixed models. The most extreme of a com
pletely mixed model would be a zero-age 1 Af© star calibrated to the solar radius and 
luminosity, for which we would expect d — 13pHz. The scatter amongst the various 
numerical computations is too great to make a sound comparison, though the esti
mate given here appears to be somewhat too low.

Finally I include in Table 1 the results of an estimate made by Faulkner et al. 
(1986) from the asymptotic formula (11.7) of a solar model with a cloud of weakly 
interacting massive particles (wimps) in its interior. The effect of wimps is to intro
duce an additional energy-transporting agent into the inner regions, thereby making 
the core more nearly isothermal. Despite the resulting reduction in the p gradient, 
the effect is to reduce the sound speed preferentially near the centre, and so de
crease d. Numerical calculations by Däppen et al. (1986) have confirmed this result. 
The entries in Table 1 are averages of the two calculations.

13. Asteroseismological calibration
For stars of known chemical composition, the seismological diagnostic quan
tities A and d provide a very important supplement to the usual astronomical 
data. In particular, for zero-age main-sequence stars, the scaling (12.4), together 
with a mass-radius relation, should in principle permit one to infer the mass of a star. 
Note that if one ignores the difference between the meanings of R in the scalings 
(12.3) and (12.4), a knowledge of d would at first sight provide no new information. 
However, if that difference is taken into account, one would expect A and d to 
scale rather differently with chemical composition, and therefore some overall abund
ance information would also be available.

For older stars there is the added richness afforded by the temporal evolution. 
Since both d and A change with time, one might expect to be able to determine 
both the mass and the age of a star. This was first pointed out by Christensen- 
Dalsgaard (1986), but would evidently be the case only if all the other uncertain 
parameters determining the structure of the stellar model were known (and, of 
course, provided that the implementation of the theory of stellar evolution were 
correct).
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Before addressing the issue of what might actually be learned from A and d to 
constrain the possible structure of a stellar model, it is useful first to consider how 
A and d depend on Al and f To this end it is necessary to determine how R 
varies with time. Since, according to the analysis of section 5, the evolution results 
solely from the depletion of X which causes an augmentation of L, I shall adopt the 
approximation dlnÄ/dlnT = (51nÄ/cHn£)dln£/c?lnT, where the partial de
rivative (<?ln7?/<?ln£) is at constant Al, T, Z and a, and can thus be deduced from 
the scalings (4.17) and (4.19), and the time derivatives represent the evolution of a 
given model (at constant Al, Z and a). Thus dln£/t?lnT is obtained by differentiat
ing Equation (5.8). The value of this derivative, together with the other partial 
derivatives of R and L obtained from the scalings (4.17) and (4.19) and Equation 
(5.8) are listed in the first two columns of Table 2. From the derivative of Equation 
(12.2) and the scalings (12.3) and (12.4), the partial derivatives of A and d can 
thus be determined. These too are listed in Table 2. (For this purpose the scaling

In R In L In Te In A In d

In To -1 -4.8 -0.7 1.5 1.5
In Z -0.5 -0.55 0.11 0.75 0.75
In Al 1.2 5.5 0.78 -1.3 -1.3
In a -0.2 0 0.10 0.3 0.3
In T 0.09 0.4 0.06 -0.14 -0.68

Table 2. Partial derivatives dAk/da, of the properties Ak = (In 
solar model with respect to the control variables a, — (In Xo, In

R,
z,

In L, In T„ In A, In d) of a standard 
In Af, In a, In r).

of d has been assumed to be the same as that of A.) It is evident that both A and 
d decrease with time, d decreasing roughly five times faster than A. The results 
are plotted against each other in Figure 3, which, in view of the cavalier way in which 
I have simplified the analysis, can be regarded as only a very crude representation of 
what actually occurs. The careful numerical computations reported by Christensen- 
Dalsgaard (1988), however, are at least superficially similar.

Knowledge of A and d fixes a point in Figure 3, to which correspond values 
of Al and T (and hence t). But that is unambiguously the case only if the chemical 
abundance parameters, Xo and Z, and the mixing-length parameter a are known, 
together with, say, the luminosity L. How well Al and t can be determined de
pends on the errors in the other astronomical information about the star and on the 
sensitivity of the asteroseismological analysis to those errors. This issue has been 
partially addressed by Ulrich (1986, 1988), who determined the information required 
to obtain the entries in Fable 2 from numerical computations. His results differ
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Fig. 3. Dependence of d upon A for late-type main-sequence stars, estimated from the rough scaling 
arguments described in the text. The solid lines represent the evolution of a given star (M = constant); the 
dashed lines are evolutionary isochrones (lines of constant T = t/ZTO). If ö rather than d were plotted 
against A, the evolutionary isochrones, in this approximation, would be uniformly spaced horizontal 
lines.

somewhat from the results I have obtained from the simple scaling laws, but that will 
not alter the qualitative nature of my principal conclusion.

Let a, = (lnJfo» Ina, InAf, Ini) be the control parameters for the theoretical 
stellar model, and let Ak = (In 7’, In/., In A, ln7) be the output. Then from the partial 
derivatives dAk/dai of Table 2 one knows that small changes ba, in the control para
meters produce changes bAk in the output, according to the linearized equations

-—f-'i, - 6Ak = 0.
da;

(13.1)
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One can now ask how any four parameters Bk, say, selected from the nine para
meters a„ Ak, depend on the remaining parameters b,. More generally, the nine 
parameters b,, BK can be any set of independent functions of ai} Ak. The appropriate 
relations between small perturbations bb„6>Bk to bi} Bk are, of course, simply Equa
tions (13.1) rewritten in terms of the new variables thus:

d Ak 0 di 
d cij dBm + ffc)6Bm + 6bj = 0, (13.2)

which can be solved formally for 6>Bm in terms of bbr If one then sets b, — 
(where 6(J is the Kronecker delta), to obtain the solution 6>,Bk, say, the appropri

ate sensitivity matrix is given by

6iBk = dBk
6bj dbi ‘

(13.3)

In Equation (13.2) the partial derivatives dAjda, are defined regarding Ak to be 
functions of a, as in Equation (13.1); thus they are the partial derivatives given in 
Table 2. The derivatives where a, is any of a, or Ak and |3; is />, or
Bk, are the partial derivatives of the transformation a, = a,(PJ between the two sets 
of variables. The resulting partial derivatives in equation (13.3) are thus taken with 
the components Bk considered as functions b„ analogously to those of Equation 
(13.1).

The results of such a transformation is given in Table 3, where I have taken Bk — 
(lnx, InAf, lnT, Ina) in the hope that they can be determined in terms of bt — 
(2001n7^, lOlnT, 101n(Z/T0), A, </), where A and d are measured in |lHz. In so

Ö7; bt/t bM/M ÖF/T öa/a

7). 0.0057; 0.003 -0.03 0.09 0.13
L 0.17. -0.012 0.14 -0.38 -0.49
z/x. O.lZ/To -0.078 -0.17 1.8 -7.4
A 1 [1Hz 0.013 0.01 -0.05 -0.04
d 1 pHz -0.19 -0.01 0.08 0.08

Table 3. 
errors in

Sensitivity 
calibrating

matrix dBJdb,. The entries in 
t, M, Y or a from the errors

i columns 3-6 represent the contributions to the relative 
ÖZ>, in bj that are listed in column 2.
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doing, I have assumed that tms^X{]/L. The factors in the definition of b, have been 
chosen such that a value of unity for any component represents a (perhaps 
optimistic) estimate of the smallest error one might make from the observation of an 
isolated sun-like star. Thus the entries in Table 3 represent the contributions from 
those errors in bt to the resulting relative errors in t, M, F and a. It is evident from 
the magnitude of the entries that from a knowledge of the position of a star on Figure 
3 the mass and age of that star can each be determined to within about 20%. 
However one cannot determine the initial helium abundance Fo. A somewhat less 
optimistic conclusion is reached (Gough, 1987) if one replaces Table 2 by the numeri
cal derivatives one deduces from the data provided by Ulrich (1986, 1988)4.

4. My earlier conclusion (Gough, 1987) was very much less optimistic than that arrived at here. The main 
reason is that errors in modern spectroscopic determinations of T and ZA¥0 for stars observed with 
the precision required for detecting a spectrum of p-mode oscillations (cf. Smith et al., 1986; Perrin et 
al., 1988; Spite et al., 1989) are substantially less than the older estimates which I had used.

The relatively high sensitivity of the components of Bt of Table 3 to Z/Xo sug
gests that perhaps Z/Xo should not be used as a control variable. This conclusion is 
strengthened by the realization that Z enters the equations principally via the opaci
ty, and that therefore this analysis also reflects the sensitivity of the results to errors in 
the uncertain results of opacity calculations. Thus, if surface gravity, for example, 
were used instead, or if a determination of M could be made for a component of a 
binary system, then perhaps Z/Xq and T could be determined more reliably 
(Gough, 1987).

The ramifications of this seismological sensitivity analysis, even for sun-like stars, 
have not yet been fully explored. Nor has the analysis been carried out for stars whose 
structure differs substantially from that of the sun. Therefore it is not yet possible to 
make a quantitative assessment of the role the anticipated asteroseismic data will 
play. It is already evident from the difference between Table 3 and an analogous 
table (Gough, 1987) computed from presumably more accurate numerical calcula
tions by Ulrich that variations in the values in Table 2 can produce quite substantial 
changes in the outcome of the analysis. Thus there might be regions in Figure 3 that 
are significantly less sensitive to the uncertain control parameters.

14. Conclusion
The purpose of my introductory discussion has been mainly to provide some insight 
into the structure and evolution of sun-like stars on the main sequence. I have 
avoided use of the results of complicated numerical calculations as much as possible, 
relying on simple scaling arguments wherever I could. This is in character with many 
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of the arguments Strömgren himself advanced during his very productive career. 
Although the results of scaling arguments are not as accurate as detailed numerical 
calculations, and should not be used for quantitative comparisons between theory 
and observation if precise numerical results are available, they do provide a means by 
which some understanding of numerical computations can be achieved, and they are 
also often a ready tool for making preliminary estimates of the effects of some small 
change to the assumptions of the theory. Thus they are an extremely important 
complement to numerical modelling.

I have not attempted a serious review of the literature, but have instead concen
trated on physical rationalizations. Much of what I have discussed is very well 
known, but I have also extended the technique to address some of the seismic proper
ties of stars, which are of only quite recent interest and which promise to become an 
extremely important diagnostic of stellar structure. Thus I hope that this contribu
tion will be of some practical scientific use.

One of the issues to which Strömgren devoted considerable attention is the helium 
content of main-sequence stars. With the addition of anticipated new asteroseismic 
data I have readdressed that subject, originally in the hope that substantial progress 
might soon be made. The initial results were perhaps disappointing, because the 
inferred helium abundance appears to be extremely sensitive to uncertainties in the 
astronomical data. However, sensitivity in one direction always implies that there is a 
direction, in some sense opposite, in which there is very little sensitivity; and that is 
perhaps the direction to go to make reliable physical deductions. Therefore we can 
look forward to the new data in the optimistic belief that important new constraints 
will be set on the possible structure of main-sequence stars, which no doubt will lead 
to an improvement in our understanding of stellar evolution.
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